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Logarithmic corrections of the avalanche distributions of sandpile models
at the upper critical dimension

S. Lübeck*
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany

~Received 20 May 1998!

We study numerically the dynamical properties of the Bak-Tang-Wiesenfeld~BTW! model on a square
lattice for various dimensions. The aim of this investigation is to determine the value of the upper critical
dimension where the avalanche distributions are characterized by the mean-field exponents. Our results are
consistent with the assumption that the scaling behavior of the four-dimensional BTW model is characterized
by the mean-field exponents with additional logarithmic corrections. We benefit in our analysis from the exact
solution of the directed BTW model at the upper critical dimension, which allows us to derive how logarithmic
corrections affect the scaling behavior at the upper critical dimension. Similar logarithmic correction forms fit
the numerical data for the four-dimensional BTW model, strongly suggesting that the value of the upper critical
dimension is 4.@S1063-651X~98!12609-0#

PACS number~s!: 05.40.1j
by
in
-

he
t
n
e

f
v

a
in
g
ly,

sy
u
l

io

e

di-
ni
th
el
n

ed
he

W

ac-
to

sis
as
by

-
em
ug-
eed

e

par-

sed

an
are
a

f

ter-
I. INTRODUCTION

The concept of self-organized criticality introduced
Bak, Tang, and Wiesenfeld allows us to describe scale
variance in driven systems@1#. Sandpile models and espe
cially the Bak-Tang-Wiesenfeld~BTW! sandpile model are
known as the paradigm of self-organized criticality. T
steady state dynamics of the system is characterized by
probability distributions for the occurrence of relaxatio
clusters of a certain size, area, duration, etc. Despite num
ous theoretical efforts@2–5# the values of the exponents o
the probability distribution characterizing the critical beha
ior of the system were determined only numerically forD
52 and D53 @6,7#. These investigations are based on
accurate finite-size scaling analysis and were confirmed
recently published work@8#. In higher dimensions the scalin
behavior of the BTW model is still controversial. Especial
the value of the upper critical dimensionDu , where the
mean-field solution describes the scaling behavior of the
tem, is not known exactly. Whereas renormalization gro
approaches predictedDu54 @9–11#, the results of numerica
simulations are not consistent. Several authors were led
their investigations to the conjecture thatDu54 @7,12#. On
the other hand comparable simulations in various dimens
display no mean-field behavior forD54, which was inter-
preted as evidence that the values of the upper critical dim
sion are greater than 4@8,13#.

In this paper we consider the BTW model in various
mensions and improve the accuracy of the analysis sig
cantly. Our analysis reveals that the scaling behavior of
four-dimensional model is characterized by the mean-fi
exponents with additional logarithmic corrections. We be
efit in our analysis from the exact solution of the direct
BTW model, which displays logarithmic corrections at t
upper critical dimensionDu53 @14#. This solution is used in
order to develop a scaling analysis for the directed BT
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model, which takes these logarithmic corrections into
count. This type of scaling analysis will then be applied
the usual BTW model. The important result of this analy
is that the scaling behavior of the probability distributions
well as the usual finite-size scaling ansatz are affected
logarithmic corrections forD54. These logarithmic correc
tions are a particular feature of the four-dimensional syst
and would not be observed in higher dimensions. This s
gests that the value of the upper critical dimension is ind
4.

II. THE BTW MODEL

We consider theD-dimensional BTW model on a squar
lattice of linear sizeL in which integer variablesEr>0 rep-
resent local energies. One perturbs the system by adding
ticles at a randomly chosen siter according to

Er°Er11. ~1!

A site is called unstable if the corresponding energyEr ex-
ceeds a critical valueEc , i.e., if Er>Ec , whereEc is given
by Ec52D. An unstable site relaxes, its energy is decrea
by Ec , and the energy of the 2D next neighboring sites is
increased by one unit, i.e.,

Er→Er2Ec , ~2!

Enn ,r→Enn ,r11. ~3!

In this way the neighboring sites may be activated and
avalanche of relaxation events may take place. The sites
updated in parallel until all sites are stable. Starting with
lattice of randomly distributed energiesEP$0,1,2, . . . ,
Ec21%, the system is perturbed according to Eq.~1! and
Dhar’s ‘‘burning algorithm’’ is applied in order to check i
the system has reached the critical steady state@2#. Usually
one studies several different quantities in order to charac
ize the avalanches: the number of relaxation eventss ~size!,
the number of distinct toppled lattice sitesa ~area or vol-
ume!, the durationt, and the radiusr . In the critical steady
2957 © 1998 The American Physical Society
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2958 PRE 58S. LÜBECK
state the corresponding probability distributions should o
power-law behavior characterized by exponentsts , ta , t t,
andt r according to

Px~x!;x2tx, ~4!

with xP$s,a,t,r %. Because a particular lattice site ma
topple several times, the number of toppling events exce
the number of distinct toppled lattice sites, i.e.,s>a. It is
known that multiple toppling events can be neglected forD
>3 @7,12#, i.e., the distributionsPs(s) andPa(a) display the
same scaling behavior and, especially,ts5ta .

Scaling relations for the exponentsts , ta , t t, andt r can
be obtained if one assumes that the size, area, duration
radius scale as a power of each other, for instance,

t;r g tr. ~5!

The transformation law of probability distributionsPt(t)dt
5Pr(r )dr leads to the scaling relation

g tr5
t r21

t t21
. ~6!

The scaling exponentsgxx8 are important for the descriptio
of the avalanche properties and their propagation. For
stance, the exponentgsa indicates if multiple toppling events
are relevant (gsa.1) or irrelevant (gsa51). Since the ex-
ponentgar determines the scaling behavior of the avalanc
area with its radius,gar is an appropriate tool to investigat
whether the avalanche shape displays a fractal behavio
not. Finally, the exponentg tr is usually identified with the
dynamical exponentz.

The measurement of the probability distributions and
corresponding exponents@Eq. ~4!# is affected by the finite
system sizeL. If the avalanche exponentstx exhibit no sys-
tem size dependence the finite-size scaling analysis coul
applied @15#. In that case the probability distributions obe
the scaling equation

Px~x,L !5L2bxgx~xL2nx!, ~7!

where the exponents have to fulfill the scaling equationbx
5txnx @15#. The exponentnx determines the cutoff behavio
of the probability distribution and it was shown thatnx
5gxr ~see, for instance,@7#!. The advantage of the finite-siz
scaling analysis is that it additionally yields to the avalanc
exponentstx the important scaling exponents: the avalanc
dimensionna , the dynamical exponentn t5z, etc.

The value of the upper critical dimensionDu of the undi-
rected BTW model is not rigorously known. Several attem
were made to determine the value ofDu using numerical
simulations@7,8,12,13#. Usually one considers the probab
ity distributions and compares the avalanche exponents
the known mean-field values~see, for instance,@16#!. But
due to the limited computer power the implementation of
higher-dimensional systems reduces considerably the sy
sizes L and consequently also the straight portion of t
probability distributions. This makes a determination of t
avalanche exponents via regression very difficult forD.3.
This disadvantage can be avoided by applying a finite-s
scaling analysis. Our results obtained in this way are con
y
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tent with the assumption thatDu54 and that the avalanch
dimension isva54 for D>4 @7#.

Recently, Chessaet al. considered the BTW model in
various dimensions using the same finite-size scaling an
sis@8#. Compared to@7# they examined larger system sizes
D>3 and used improved statistics~up to 107 nonzero ava-
lanches!. From their results, which differ forD>4 from
those in@7#, they concluded thatD54 is not the upper criti-
cal dimension. Especially, they obtained from their finit
size scaling analysisva'3.5 for the four-dimensional BTW
model, i.e., the avalanches display a fractal behavior alre
for D54. The origin of these conflicting results is that th
used statistics (23106 nonzero avalanches! in @7# is not suf-
ficient. Especially, the fluctuating data points at the cutoff
the distributionPa(a) lead to uncertain results~see Fig. 5 in
@7#!. For instance it is possible to obtain with this data
collapse of the distributionsPa(a,L) for values of the ava-
lanche dimension betweenva53.4 andva54.1.

Thus, there is no agreement in the literature on the beh
ior of the BTW model in different dimensions; Chessaet al.
concluded from their analysis that the upper critical dime
sion is larger than 4 and that the avalanches display fract
already forD54. On the other hand there exist several th
oretical approaches that lead to the conclusion thatDu54;
real space@9# as well as momentum space@10,11# renormal-
ization group analysis both predictedDu54. From their ex-
act solution of the BTW model on the Bethe lattice, Majum
dar and Dhar concluded thatDu>4 because the fracta
dimension of avalanche clusters must be lower than tha
the embedding space@17#. This leads the authors to the con
jecture that the avalanches are compact forD<Du and frac-
tal above the critical dimension. This fractal nature of t
avalanche structure was already observed. Considering
avalanche propagation in higher dimensions it was fou
that the avalanches are characterized by a compact activ
front for D53 andD54. For D.4 the compact shape o
the activation front is lost and several branches propag
through the system without coalescing together again~see
Fig. 8 in @7#!. Here the avalanche propagation can be
scribed as a branching process that is the main feature o
mean-field solution of sandpile models~see, for instance
@16#!. Assuming that the clusters are compact and neglec
multiple toppling events~which are justified forD53 and
D54 @7,12#!, Zhang derived in the continuum limit th
equationta5222/D @18#, which gives the mean-field valu
asta53/2 again forD54.

This incoherent picture of the behavior of the BTW mod
in higher dimensions leads us to reconsider the avalan
distributions again and compare our results with those of@8#.
In contrast to our previous work@7# we now use larger sys
tem sizes (L<128 for D54, L<48 for D55, andL<24
for D56) and increase the statistics significantly, i.e.,
averaged all measurements over at least 53107 nonzero ava-
lanches. As usual we measure the avalanche distribut
@Eq. ~4!# by counting the number of avalanches correspo
ing to a given area, duration, etc., and integrate these n
bers over bins of increasing length~see, for instance,@19#!.
Successive bin length increases by a factorb.1. Throughout
this work we performed all measurements with the factob
51.2 since larger values ofb may change the cutoff shape o
the distributions. Applying the finite-size scaling analys
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this effect could lead to uncertain results for the scaling
ponentva ~we found that this effect has to be taken in
consideration at least forb>1.5).

We focus our attention on the finite-size scaling analy
Performing this analysis it is informative to produce the d
collapse not only for all curves corresponding to differe
system sizes but also to check the obtained data collaps
selected curves. For instance, the finite-size scaling ana
of two curves corresponding to two successive system s
(L1,L2) allows us to check whether the actual scaling
gime is already reached. This analysis is shown in Fig. 1
the three-dimensional BTW model where it is known th
finite-size scaling works forL>64 @7#. If one performs the
finite-size scaling analysis for two system sizes withL1
,L2,64 it is possible to obtain a data collapse~with small
but systematic deviations, especially at the cutoff! but then
the scaling exponents depend on the system sizes. In F
we plot the scaling exponentna(L1 ,L2) as a function of the
average system sizeL5(L1L2)1/2. With increasing system
sizes the exponent tends to the valuena53. For L>64 no
significant system size dependence could be observed, i
crossover to the actual scaling regime where finite-size s
ing works takes place atLco'64.

Analogous to the three-dimensional model we perfo
the same analysis forD54, 5, and 6, and plot the obtaine
results in Fig. 1. It is remarkable that within the error ba
the valuesna(D53)11, na(D55), andna(D56) display
for small system sizes the same finite-size depende
whereas the behavior of the four-dimensional system dif
significantly from the other dimensions. The conjecture t
the system size dependence ofna is independent of the di
mension~except in the caseD54) implies that the crossove
to the actual scaling regime takes place at a compar
valueLco'64. This could explain why the finite-size scalin
analysis performed by Chessaet al. for D>5 yields expo-
nents that are lower than the mean-field valuena54 @8#.
Their considered system sizes forD>5 are outside the scal

FIG. 1. The finite-size scaling exponentsna of the BTW model
for various dimensions. The values of the exponents are obta
from the finite-size scaling analysis@Eq. ~7!# of two probability
distributions corresponding to two different system sizesL1 andL2

and are plotted as a function ofL5(L1L2)1/2. In order to compare
the different dimensionsna11 is plotted forD53.
-
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ing regime where finite-size scaling works. Thus, they~and
of course all other previous numerical investigatio
@7,12,13#! observed only the crossover to the real scal
regime and not the real scaling behavior itself.

The significantly different behavior of the scaling exp
nent na for D54 ~see Fig. 1! is remarkable since with in-
creasing system size no crossover to a scaling regime w
system size independent exponentna could be observed. It
seems that the scaling behavior of the four-dimensio
model differs in principle from all other dimensions. A po
sible explanation is that the value of the upper critical dime
sion isDu54. Then the unique behavior of the exponentna
and the observed deviations to the expected pure mean-
scaling behavior forD54 @8# could be explained by addi
tional logarithmic corrections that affect the scaling behav
and that typically occur at the upper critical dimension.

In the rest of this paper we will show that our results a
consistent with the assumption that the scaling behavio
the four-dimensional BTW model is characterized by t
mean-field exponents with additional logarithmic corre
tions. In the next section we consider the BTW model with
preferred direction of the dynamics. This directed BT
model is exactly solved and it is known that logarithm
corrections occur forDc53 @14#. The directed BTW model
is therefore a suitable paradigm to learn how the logarithm
corrections enter the scaling behavior at the upper crit
dimension. This method of analyzing will then be applied
the four-dimensional BTW model in Sec. IV.

III. THE DIRECTED BTW MODEL AT THE UPPER
CRITICAL DIMENSION

In this section we consider the directed version of t
BTW model that was introduced and exactly solved in
dimensions by Dhar and Ramaswamy@14#. Directed models
are characterized by a preferred direction of the toppl
rules. For instance, a relaxation process takes place in a
dimensional model if the energy of a given lattice site (i , j )
exceeds the critical valueEc5D:

Ei , j→Ei , j2Ec ,

Ei 11,j→Ei 11,j1Ec /D, ~8!

Ei , j 11→Ei , j 111Ec /D.

One usually considers in simulations directed systems o
square lattice with periodic boundary conditions in the dire
tion perpendicular to the preferred direction and open bou
ary conditions parallel to the preferred direction. The syst
is perturbed on the first line only~top of the pile! and par-
ticles could leave the system only on the last line~bottom of
the pile!.

No multiple toppling events can occur (⇒ts5ta) be-
cause of the definition of the toppling rules. Since the p
turbation takes place only on the top of the pile the aver
flux of particles through a surface in a given distance fro
the top is constant. This flux conservation leads to the sca
relation @14#

ta522
1

t t
. ~9!

ed
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2960 PRE 58S. LÜBECK
According to Dhar and Ramaswamy the avalanche ex
nents of the two-dimensional model can be obtained by m
ping the avalanche propagation onto a random walk and
getsta54/3 andt t53/2, respectively.

For D>3 the exponents equal the mean-field values,
ta53/2 andt t52, and additional logarithmic corrections t
the power-law behavior occur inD53, which is the value of
the upper critical dimension@14#. A snapshot of several ava
lanches of the three-dimensional model are shown in Fig
The shape of the avalanches reminds us of a branching
cess that characterizes the avalanche propagation in
mean-field solution.

According to the exact solution of Dhar and Ramaswa
the mean square fluxm(t) out of a given surfacet is given
by

m~ t !5 (
t851

t

F~ t8!, ~10!

with F(t);1/ln t for D53 @14#. Since the average flux
through a surfacet is constant in the steady state the pro
ability distribution of an avalanche of duration greater th
or equal toT scales in leading order as

P~ t>T!;
1

m~T!
;

ln T

T
. ~11!

The corresponding plot of the rescaled distributionTP(t
>T) as a function of the duration in a logarithmic diagram
shown in Fig. 3 and confirms Eq.~11!. The scaling behavior
of the corresponding density distributionPt(t) is then given
by

Pt~ t !;
ln t

t2
. ~12!

FIG. 2. Snapshots of three arbritrarily chosen avalanches of
directed BTW model at the upper critical dimension forL5128.
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In Fig. 4 we plot the rescaled distributionPt(t)/ ln t as a
function of the durationt. The rescaled distribution exhibit
a power-law behavior with the exponentt t52, in agreement
with Eq. ~12!. The inset of Fig. 4 shows that a fit of th
unscaled distributionPt(t) leads to lower values of the ex
ponentst t , i.e., a simple regression analysis can lead to
wrong result that the probability distributions are not char
terized by the mean-field exponents.

The scaling behavior of the average avalanche dura
^t&L confirms the relevance of the logarithmic correction
Using Eq.~12! the average duration is given by

e

FIG. 3. The probability distributionsP(t>T) of an avalanche of
duration greater than or equal toT for the directed BTW model at
the upper critical dimensionDu53. According to Eq.~11! TP(t
>T) is plotted as a function of lnT. The dotted line is plotted to
guide the eye.

FIG. 4. The probability distributionsPt(t) of the directed BTW
model for D53. According to Eq.~12! Pt(t)/ ln t is plotted as a
function of the durationt. The dashed line corresponds to a pow
law with the exponentt t52. In the inset we plotPt(t) vs t. Here,
the curvature is caused by the logarithmic corrections. The in
shows that incorrect results of the exponents are obtained if
does not take the logarithmic corrections into account.
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PRE 58 2961LOGARITHMIC CORRECTIONS OF THE AVALANCHE . . .
^t&L5E tmax
tPt~ t !dt;~ ln L !2, ~13!

because in directed models the maximum value of the a
lanche durationtmax equals the system sizeL. The scaling
behavior of the average duration clearly displays the
evance of the logarithmic corrections since without the
corrections the average duration scales as; ln L. In order to
confirm this result we plot in Fig. 5 the square root of t
average duration as a function of the system sizeL in a
logarithmic diagram. The scaling behavior of the avera
duration agrees with Eq.~13!.

The scaling behavior of the probability distributionPa(a)
of the avalanche area also displays logarithmic correctio
The areaa of an avalanche of total durationt is determined
by the average number of toppling events in each surf
t8<t ~see@14#! and one gets to leading order

a~ t !5 (
t851

t

m~ t !;
t2

ln t
. ~14!

Instead of the usual scaling behaviora;t2, which is valid
for D.Du , the leading order of the area scales with t
duration asa;t2/ln t. Since the maximum value of the du
ration tmax equals the system size the maximum avalan
area scales as

amax;
L2

ln L
. ~15!

The maximum areaamax determines the cutoff behavior o
the probability distribution and Eq.~15! indicates that the
usual finite-size scaling ansatz@Eq. ~7!# has to be modified in
the presence of logarithmic corrections. In the following w
derive this modified finite-size scaling ansatz that descri
the scaling behavior of the avalanche distributionPa(a) for
D5Du . We assume that the leading order of the probabi
distribution of the avalanche area is given by

FIG. 5. The square root of the average avalanche distribu
^t&L

1/2 vs L of the directed BTW model forD53. The solid line
corresponds to a logarithmic dependence of^t&L

1/2 according to Eq.
~13!.
a-

l-
e

e

s.

e

e

s
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Pa~a!;
~ ln a!xa

ata
, ~16!

with the mean-field exponentta53/2, and where the expo
nent of the logarithmic correctionsxa has to be determined
Comparing Eq.~12! with Eq. ~16! the corresponding expo
nent of the duration distribution is given byxt51. Using the
transformation law for probability distributionsPa(a)da
5Pt(t)dt one can derive the exponentxa . Inserting Eq.~14!
into Eq. ~16! one gets

Pa@a~ t !#;t23~ ln t !xa13/2S 22
ln ln t

ln t D xa

~17!

and analogous

da~ t !

dt
;t

2 ln t21

~ ln t !2
. ~18!

The term of leading order in the transformation law has
vanish and thus we getxa51/2.

Due to the logarithmic corrections of the probability di
tribution Pa(a) the simple finite-size scaling ansatz Eq.~7!
does not work. The simplest ansatz is to assume that
rescaled distributionPa(a)(ln a)xa obeys the finite-size scal
ing equation

Pa~a,L !~ ln a!2xa; f ~L !g~a/amax! ~19!

with the universal functiong and where the scaling functio
f (L) has to be determined. For low values of the argumen
the universal function (a!amax) the rescaled probability dis
tribution is independent of the system size and is charac
ized by the power-law behaviorg(x);x2ta only. Thus we
obtain f (L);amax

2ta . Using the known scaling behavior o
amax we get the modified finite-scaling ansatz

Pa~a,L !~ ln a!2xa5L22ta~ ln L !tag~aL22ln L !. ~20!

We present the corresponding scaling plot in Fig. 6. The d
collapse of the different curves corresponding to differe
system sizeL confirms the above analysis.

In summary we showed that the scaling behavior of
directed BTW model at the upper critical dimension is ch
acterized by strong logarithmic corrections. These logar
mic corrections affect the usual probability distributions@Eq.
~4!#, the scaling equations@Eq. ~5!#, and the finite-size scal
ing analysis@Eq. ~7!#. The corrections are relevant in th
sense that one has to take them into account in orde
describe the real scaling behavior, otherwise one gets wr
values for the exponents~see Fig. 4!.

Additionally we simulated the directed BTW model fo
D54 and performed a finite-size scaling analysis. In agr
ment with the exact solution of Dhar and Ramaswamy
simple finite-size scaling ansatz, i.e., without logarithm
corrections, works quite well and the corresponding ex
nents equal the mean-field exponents. Thus, the logarith
corrections to the scaling behavior occur only at the up
critical dimensionDc53 @14#.

n
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IV. THE UNDIRECTED BTW MODEL FOR D54

In the following we return to the investigation of the u
directed BTW model forD54 and show that the avalanch
distributions are characterized by logarithmic correctio
comparable to the directed BTW model at the upper criti
dimension. First we generalize the scaling equations by
troducing certain exponents that describe the logarith
corrections. Guided by our previous analysis we assume
the probability distributions are given by

Pt~ t !;
~ ln t !xt

tt t
and Pa~a!;

~ ln a!xa

ata
. ~21!

The maximal avalanche duration and area that determine
cutoff behavior of the corresponding distributions shou
scale with the system size as

tmax;
Ln t

~ ln L !Nt
and amax;

Lna

~ ln L !Na
. ~22!

The fifth introduced exponent describes how the area sc
with the duration

a~ t !;
tgat

~ ln t !Gat
. ~23!

At the upper critical dimension the avalanche and sca
exponents equal the mean-field valuesta53/2, t t52, na
54, n t52, andgat52. In this way the logarithmic correc
tions are determined by five non-negative exponents
have to fulfill two scaling relations. The transformation la
of probability distributions leads to the first scaling equatio

Pa„a~ t !…
da~ t !

dt
dt5Pt~ t !dt⇒ Gat

2
5xt2xa , ~24!

FIG. 6. The modified finite-size scaling plot of the probabili
distributionPa(a) of the directed BTW model forD53. The data
collapse of the different curves corresponding to different sys
sizesL confirms Eq.~20!. The dashed line corresponds to a pow
law with the mean-field exponentta53/2.
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where we make use of the equationgat5(t t21)/(ta21)
and assume that the term of leading order of the logarith
corrections has to vanish. Under the condition that the s
ing behavior of the leading order of the maximum avalanc
areaamax is given by Eqs.~22! and~23! we obtain the second
scaling relation

amax5a~ tmax!5
Ln tgat

~ ln L !Ntgat1Gat
⇒Na5Gat1gatNt .

~25!

Here we use that the scaling exponents equal the avala
dimension (na5gar) and the dynamical exponent (n t
5g tr), respectively. The relationg trgat5gar @13# leads to
Eq. ~25!. Thus, the logarithmic corrections to the usual sc
ing behavior are determined by only three independent
ponents.

Corresponding to the directed BTW model forD5Duwe
assume that the distributions obey the finite-size scaling
satz

Pt~ t,L !~ ln t !2xt; f t~L !gt~ t/tmax!, ~26!

Pa~a,L !~ ln a!2xa; f a~L !ga~a/amax!, ~27!

where the scaling functionsf t and f a are given by

f t~L !;L2n tt t~ ln L !Ntt t, ~28!

f a~L !;L2nata~ ln L !Nata, ~29!

since for small values of the argument of the universal fu
tions (t!tmax anda!amax) the probability distributions are
independent of the system size. ForD5Du the avalanche
and scaling exponents equal the mean-field valuesta
53/2, t t52, na54, andn t52. Thus the finite-size scaling
analysis of the area and duration distribution gives the c
rection exponentsNt , xt , Na , xa , and the obtained value
have to fulfill the equation@Eqs.~24! and ~25!#

FIG. 7. The system size dependence of the average avala
duration^t&L of the BTW model forD54. To guide the eye we plo
the solid line that corresponds to Eq.~31!.
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2~xt2xa!5Na22Nt . ~30!

Analogous to the analysis of the directed BTW model
consider the scaling behavior of the average avalanche d
tion ^t&L before we apply the finite-size scaling analysis. A
cording to Eqs.~21! and ~22! the average duration is give
by

^t&L5E tmax
tPt~ t !dt;S ln

L2

~ ln L !Nt
D xt11

, ~31!

which allows, in addition to the finite-size scaling analys
an independent determination of the exponentsxt and Nt .
We tried several values ofxt and Nt and obtained a good
result for xt'1/2 andNt'1/2. In Fig. 7 we present in a
logarithmic diagram̂ t&2/3 vs L2/(ln L)1/2. The plotted values
are located on a straight line, in agreement with Eq.~31!.

These values are confirmed by the finite-size sca
analysis of the duration distributionPt(t) according to Eq.
~26!. A satisfying data collapse is obtained forxt51/2 and
Nt51/2, as one can see in Fig. 8.

Now we consider the finite-size scaling analysis of t
area durationPa(a). Since the correction exponents have
fulfill Eq. ~30! it must be possible to produce the data c
lapse ofPa(a) by varying one parameter only if we assum
that the above determined valuesxt51/2 andNt51/2 are
correct. We eliminatedNa in the scaling ansatz@Eqs. ~27!
and~29!# and varied the exponentxa . An almost perfect data
collapse is obtained forxa'1/4. The corresponding scalin
plot is shown in Fig. 9 and confirms the accuracy of t
above determined exponentsxt and Nt . In contrast to the
three-dimensional model, where the simple finite-size sca
works for L>64 @7#, the finite-size behavior of the four
dimensional model is governed by the logarithmic corr
tions and the modified finite-size scaling ansatz works v
well already for L>24. Finally, we mention that Chess
et al. who used the simple finite-size scaling ansatz obtai

FIG. 8. The modified finite-size scaling plot of the probabili
distribution Pt(t) of the BTW model for D54 and L
524,32,40,48,56,64,72,80,96,128. The data collapse of the di
ent curves corresponding to different system sizesL confirms Eq.
~26!. The dashed line corresponds to a power law with the me
field exponentt t52.
ra-
-

,

g

-

g

-
y

d

a less accurate data collapse forL>48 @8# since they did not
take the logarithmic corrections into account.

V. CONCLUSIONS

We studied numerically the dynamical properties of t
BTW model on a square lattice forD>3. Our investigation
of the avalanche distribution, which includes a careful e
amination of the finite-size corrections, shows that analy
@7,8# of the BTW model forD>4 are not conclusive. Ou
results are consistent with the assumption that the sca
behavior of the four-dimensional BTW model is charact
ized by the mean-field exponents with additional logarithm
corrections. We provide numerical tests for the theoretica
predicted logarithmic correction terms for the directed BT
model at the upper critical dimensionDu53. We introduce a
refined finite-size scaling analysis that takes these loga
mic corrections into account. These logarithmic correctio
occur for D54 only, strongly suggesting that the value
the upper critical dimension is 4. To prove this definitively
our opinion it is necessary to show that the distributions
the five-dimensional model are characterized by the p
mean-field values. Unfortunately, due to limited compu
power it is at present impossible to consider the actual s
ing regime forD55.
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FIG. 9. The modified finite-size scaling plot of the probabili
distribution Pa(a) of the BTW model for D54 and L
524,32,40,48,56,64,72,80,96,128. The data collapse of the di
ent curves, corresponding to different system sizesL, confirms Eq.
~27!. The dashed line corresponds to a power law with the me
field exponentta53/2.
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