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Logarithmic corrections of the avalanche distributions of sandpile models
at the upper critical dimension
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We study numerically the dynamical properties of the Bak-Tang-WieseBI#V) model on a square
lattice for various dimensions. The aim of this investigation is to determine the value of the upper critical
dimension where the avalanche distributions are characterized by the mean-field exponents. Our results are
consistent with the assumption that the scaling behavior of the four-dimensional BTW model is characterized
by the mean-field exponents with additional logarithmic corrections. We benefit in our analysis from the exact
solution of the directed BTW model at the upper critical dimension, which allows us to derive how logarithmic
corrections affect the scaling behavior at the upper critical dimension. Similar logarithmic correction forms fit
the numerical data for the four-dimensional BTW model, strongly suggesting that the value of the upper critical
dimension is 4[S1063-651X98)12609-0

PACS numbds): 05.40:+j

I. INTRODUCTION model, which takes these logarithmic corrections into ac-
count. This type of scaling analysis will then be applied to
The concept of self-organized criticality introduced by the usual BTW model. The important result of this analysis
Bak, Tang, and Wiesenfeld allows us to describe scale inis that the scaling behavior of the probability distributions as
variance in driven systemd]. Sandpile models and espe- Well as the usual finite-size scaling ansatz are affected by
cially the Bak-Tang-WiesenfelBTW) sandpile model are ngarithmic corrgctions fob=4. These Iog.arithrr!ic correc-
known as the paradigm of self-organized criticality. Thetions are a particular feature of the four-dimensional system

steady state dynamics of the system is characterized by tfd would not be observed in higher dimensions. This sug-
probability distributions for the occurrence of relaxation 9€StS that the value of the upper critical dimension is indeed

clusters of a certain size, area, duration, etc. Despite numer-
ous theoretical effortf2—5] the values of the exponents of
the probability distribution characterizing the critical behav-

ior of the system were determined only numerically for We consider théd-dimensional BTW model on a square
=2 andD=3 [6,7]. These investigations are based on anjattice of linear sizeL in which integer variable&, =0 rep-
accurate finite-size scaling analysis and were confirmed in gesent local energies. One perturbs the system by adding par-
recently published work8]. In higher dimensions the scaling ticles at a randomly chosen siteaccording to
behavior of the BTW model is still controversial. Especially,
the value of the upper critical dimensidd,, where the Er—E +1. ey
mean_-fleld solution describes the scaling behav_mr pf the SYSK site is called unstable if the corresponding enegyex-
tem, is not known exactly. Whereas renormalization group L S P
; = ; ceeds a critical valug_, i.e., if E,=E_, whereE_ is given
approaches predictddl, =4 [9-11, the results of numerical by E.=2D. An unstable site relaxes, its energy is decreased
simulations are not consistent. Several authors were led ¢ | !

their investigations to the conjecture tHag=4 [7,12]. On . y E., and the energy of the2 next neighboring sites is
) . . , ! . increased by one unit, i.e.,
the other hand comparable simulations in various dimensions

Il. THE BTW MODEL

display no mean-field behavior fd =4, which was inter- E,—E,—E., 2
preted as evidence that the values of the upper critical dimen-
sion are greater than [8,13]. Enn— Epn o+ 1. (3)

In this paper we consider the BTW model in various di-
mensions and improve the accuracy of the analysis signifiln this way the neighboring sites may be activated and an
cantly. Our analysis reveals that the scaling behavior of th@avalanche of relaxation events may take place. The sites are
four-dimensional model is characterized by the mean-fieldipdated in parallel until all sites are stable. Starting with a
exponents with additional logarithmic corrections. We ben-attice of randomly distributed energieE<{0,1,2 ...,
efit in our analysis from the exact solution of the directedE.— 1}, the system is perturbed according to Et) and
BTW model, which displays logarithmic corrections at the Dhar’s “burning algorithm” is applied in order to check if
upper critical dimensio® ,= 3 [14]. This solution is used in the system has reached the critical steady $@teUsually
order to develop a scaling analysis for the directed BTWone studies several different quantities in order to character-
ize the avalanches: the number of relaxation ever&ze),
the number of distinct toppled lattice sitas(area or vol-
*Electronic address: sven@thp.uni-duisburg.de ume), the durationt, and the radius. In the critical steady
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state the corresponding probability distributions should obeyent with the assumption th&,=4 and that the avalanche
power-law behavior characterized by exponens r,, 7, dimension isv,=4 for D=4 [7].
and r, according to Recently, Chessat al. considered the BTW model in
various dimensions using the same finite-size scaling analy-
Px(X)~X"7™, 4 sis[8]. Compared t¢7] they examined larger system sizes in

, ) ) , D=3 and used improved statisti¢sp to 10 nonzero ava-
with xe{s,a,t,r}. Because a particular lattice site mayJtﬁ

) . anche$. From their results, which differ foD=4 from
topple several times, the number of toppling events exceedg, g in[7], they concluded thad =4 is not the upper criti-
the number of distinct toppled lattice sites, i.eza. It is

X f cal dimension. Especially, they obtained from their finite-
known that multiple toppling events can be neglectedDor

- X R : size scaling analysis,~ 3.5 for the four-dimensional BTW
=3[7,12}, i.e., the distribution®(s) andP,(a) display the el je., the avalanches display a fractal behavior already
same scaling behavior and, especiatlys 7, .

: ; for D=4. The origin of these conflicting results is that the
Scaling relations for the exponents, ,, 7, andr, can  ceq statistics (2 16° nonzero avalanchgi [7] is not suf-
be obtained if one assumes that the size, area, duration, agdient. Especially, the fluctuating data points at the cutoff of
radius scale as a power of each other, for instance, the distributionP,(a) lead to uncertain resultsee Fig. 5 in
[7]). For instance it is possible to obtain with this data a
collapse of the distribution®,(a,L) for values of the ava-
The transformation law of probability distributior(t)dt  lanche dimension between,=3.4 andv,=4.1.
=P, (r)dr leads to the scaling relation _ Thus, there is no ag_ree_ment in the Ilterature on the behav-
ior of the BTW model in different dimensions; Chessaal.

-1 concluded from their analysis that the upper critical dimen-
1 (6) sion is larger than 4 and that the avalanches display fractility

t already forD=4. On the other hand there exist several the-

The scaling exponents,,, are important for the description °retical approaches that lead to the conclusion Bat 4;

of the avalanche properties and their propagation. For inf€@l spacg9] as well as momentum spafk0,11 renormal-
stance, the exponent, indicates if multiple toppling events 1Zation group analysis both predictér],=4. From their ex-
are relevant §.,>1) or irrelevant s,=1). Since the ex- act solution of the BTW model on the Bethe lattice, Majum-

ponenty,, determines the scaling behavior of the avalanchélar and Dhar concluded thd@,>4 because the fractal
area with its radiusy,, is an appropriate tool to investigate dimension qf avalanche clulsters must be lower than that of
whether the avalanche shape displays a fractal behavior ¢h€ embedding spa¢e7]. This leads the authors to the con-

not. Finally, the exponeny,, is usually identified with the I€cture that the avalanches are compactstD,, and frac-
dynamical exponert. tal above the critical dimension. This fractal nature of the

The measurement of the probability distributions and thedvalanche structure was already observed. Considering the

corresponding exponenf&q. (4)] is affected by the finite avalanche propagation in higher dimensions it was found
system size.. If the avalanche exponents exhibit no sys- that the avalanches are characterized by a compact activation

tem size dependence the finite-size scaling analysis could PNt for D=3 andD=4. ForD>4 the compact shape of
applied[15]. In that case the probability distributions obey the activation front is lost and several branches propagate

t~rnr, (5)

Y=

the scaling equation through the system without coalescing toggther agaae
Fig. 8 in [7]). Here the avalanche propagation can be de-
Py(X,L)=L"Pxg,(xL™"), (7)  scribed as a branching process that is the main feature of the

mean-field solution of sandpile mode(see, for instance,

where the exponents have to fulfill the scaling equajign  [16]). Assuming that the clusters are compact and neglecting
= 7,v, [15]. The exponent, determines the cutoff behavior multiple toppling eventgwhich are justified forD=3 and
of the probability distribution and it was shown tha; D=4 [7,12)), Zhang derived in the continuum limit the
= v, (see, for instancg7]). The advantage of the finite-size equationr,=2—2/D [18], which gives the mean-field value
scaling analysis is that it additionally yields to the avalancheas 7,=3/2 again forD =4,
exponentsr, the important scaling exponents: the avalanche This incoherent picture of the behavior of the BTW model
dimensionv,, the dynamical exponent,=z, etc. in higher dimensions leads us to reconsider the avalanche

The value of the upper critical dimensi@, of the undi-  distributions again and compare our results with thog8pf
rected BTW model is not rigorously known. Several attemptdn contrast to our previous worl’] we now use larger sys-
were made to determine the value Df, using numerical tem sizes (<128 forD=4, L<48 for D=5, andL<24
simulations[7,8,12,13. Usually one considers the probabil- for D=6) and increase the statistics significantly, i.e., we
ity distributions and compares the avalanche exponents witveraged all measurements over at leastb’ nonzero ava-
the known mean-field valueee, for instance,16]). But  lanches. As usual we measure the avalanche distributions
due to the limited computer power the implementation of theEq. (4)] by counting the number of avalanches correspond-
higher-dimensional systems reduces considerably the systeimg to a given area, duration, etc., and integrate these num-
sizesL and consequently also the straight portion of thebers over bins of increasing lengtsee, for instance,19]).
probability distributions. This makes a determination of theSuccessive bin length increases by a fabterl. Throughout
avalanche exponents via regression very difficultBor3.  this work we performed all measurements with the fadtor
This disadvantage can be avoided by applying a finite-size=1.2 since larger values &f may change the cutoff shape of
scaling analysis. Our results obtained in this way are consighe distributions. Applying the finite-size scaling analysis
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' ' ' ' ' ' ing regime where finite-size scaling works. Thus, ttiagd
of course all other previous numerical investigations
400 b __ __ﬁ_%%iﬁf [7,12,13) observed only the crossover to the real scaling
regime and not the real scaling behavior itself.
The significantly different behavior of the scaling expo-
} nentv, for D=4 (see Fig. 1is remarkable since with in-
} creasing system size no crossover to a scaling regime with a
s * system size independent exponegtcould be observed. It
350 | * } } seems that the scaling behavior of the four-dimensional
model differs in principle from all other dimensions. A pos-
% ® D=3 sible explanation is that the value of the upper critical dimen-
E m D=4 sion isD,=4. Then the unique behavior of the exponept
& D=5 | and the observed deviations to the expected pure mean-field
A D=6 scaling behavior foD =4 [8] could be explained by addi-
. . . . . . tional logarithmic corrections that affect the scaling behavior
8 18 32 64 128 256 and that typically occur at the upper critical dimension.
L In the rest of this paper we will show that our results are
. ) consistent with the assumption that the scaling behavior of
FIG. 1. The finite-size scaling exponentg of the BTW model e foyr-dimensional BTW model is characterized by the
;?(;r;’a‘trt:c;u‘:’in?t';n:igse'c’::él; he valluesEof th7e exfponents ireb_cl’_bta'neﬁlean-field exponents with additional logarithmic correc-
S § N9 anays[. a. (7] of two probability 4isns. In the next section we consider the BTW model with a
distributions corresponding to two different system sizesndL, . . . . .

- 12 preferred direction of the dynamics. This directed BTW
and are plotte_d asa_functnon .bf:(Lle) - In order to compare model is exactly solved and it is known that logarithmic
the different dimensions, +1 is plotted forD =3. corrections occur fob =3 [14]. The directed BTW model
this effect could lead to uncertain results for the scaling exis therefore a suitable paradigm to learn how the logarithmic
ponentv, (we found that this effect has to be taken into corrections enter the scaling behavior at the upper critical
consideration at least fdr=1.5). dimension. This method of analyzing will then be applied to

We focus our attention on the finite-size scaling analysisthe four-dimensional BTW model in Sec. IV.
Performing this analysis it is informative to produce the data
collapse not only for all curves corresponding to different  Ill. THE DIRECTED BTW MODEL AT THE UPPER
system sizes but also to check the obtained data collapse for CRITICAL DIMENSION
selected curves. For instance, the finite-size scaling analysis . . . . .
of two curves corresponding to two successive system Sizelg_I_In this section we consider the directed version of the

: W model that was introduced and exactly solved in all
(L1<L,) allows us to check whether the actual scaling re-. . X
gime is already reached. This analysis is shown in Fig. 1 fop|men3|ons by Dhar and Ramaswafiy. Directed models

the three-dimensional BTW model where it is known that?'e chara(_:terized by a pref_erred direction of the t_oppling
finite-size scaling works fot =64 [7]. If one performs the rules. For instance, a relaxation process takes place in a two-
finite-size scaling analysis for two system sizes with dimensional model if the energy of a given lattice sitg)

<L,<64 it is possible to obtain a data collaps@th small exceeds the critical valué,=D:

3.00
4

but systematic deviations, especially at the cutofit then E . E —E

the scaling exponents depend on the system sizes. In Fig. 1 b e

we plot the scaling exponem,(L4,L,) as a function of the Ei+1j—Ei+1j+Ec/D, (8)
average system size=(L,L,)¥2 With increasing system ' '

sizes the exponent tends to the valyg=3. ForL=64 no Eij+1—Eij+1tEc/D.

significant system size dependence could be observed, i.e., a
crossover to the actual scaling regime where finite-size scaPne usually considers in simulations directed systems on a
ing works takes place at.,~64. square lattice with periodic boundary conditions in the direc-

Analogous to the three-dimensional model we performtion perpendicular to the preferred direction and open bound-
the same analysis fdd=4, 5, and 6, and plot the obtained ary conditions parallel to the preferred direction. The system
results in Fig. 1. It is remarkable that within the error barsis perturbed on the first line onltop of the pile and par-
the valuesv,(D=3)+1, v,(D=5), andv,(D=6) display ticles could leave the system only on the last libettom of
for small system sizes the same finite-size dependencé)e pile.
whereas the behavior of the four-dimensional system differs No multiple toppling events can occur(rs=17,) be-
significantly from the other dimensions. The conjecture thacause of the definition of the toppling rules. Since the per-
the system size dependenceigfis independent of the di- turbation takes place only on the top of the pile the average
mension(except in the casB =4) implies that the crossover flux of particles through a surface in a given distance from
to the actual Sca”ng regime takes p|ace at a Comparab[@e tOp is constant. This flux conservation leads to the Scaling
valueL .,~64. This could explain why the finite-size scaling relation[14]
analysis performed by Chessaal. for D=5 yields expo-
nents that are lower than the mean-field valyg=4 [8]. r=2— 1 9)

. . . . a .

Their considered system sizes &5 are outside the scal- Ty
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FIG. 3. The probability distributionB(t=T) of an avalanche of
duration greater than or equal Tofor the directed BTW model at
the upper critical dimensio® = 3. According to Eq.(11) TP(t
=T) is plotted as a function of Ifi. The dotted line is plotted to

FIG. 2. Snapshots of three arbritrarily chosen avalanches of thguide the eye.
directed BTW model at the upper critical dimension Eor 128.

In Fig. 4 we plot the rescaled distributioR(t)/Int as a

According to Dhar and Ramaswamy the avalanche expognction of the duratiort. The rescaled distribution exhibits

nents of the two-dimensional model can be obtained by mapy power-law behavior with the exponent=2, in agreement

ping the avalanche propagation.onto a random walk and ong;n, Eq. (12). The inset of Fig. 4 shows that a fit of the

gets7,=4/3 andr=3/2, respectively. _ __unscaled distributiorP,(t) leads to lower values of the ex-
For D=3 the exponents equal the mean-field values, i.e.nonentsy, | i.e., a simple regression analysis can lead to the

7= 3/2 andr =2, and additional logarithmic corrections to \,nq result that the probability distributions are not charac-

the power-law behavior occur Id =3, which is the value of  q/i-ag by the mean-field exponents.

the upper critical dimensiofL4]. A snapshot of several ava-  1hg scaling behavior of the average avalanche duration

lanches of the three-dimensional model are shown in Fig. 2.ty confirms the relevance of the logarithmic corrections.
The shape of the avalanches reminds us of a branching pr sing Eq.(12) the average duration is given by

cess that characterizes the avalanche propagation in the
mean-field solution.

According to the exact solution of Dhar and Ramaswamy  10° . - .
the mean square flum(t) out of a given surface is given

by

t 10° i
m(t)= 2 F(t), (10
t'=1 §
with F(t)~1/nt for D=3 [14]. Since the average flux = 10 ¢ T
through a surface is constant in the steady state the prob- ?f

ability distribution of an avalanche of duration greater than

or equal toT scales in leading order as 0° L

P(t=T ! nT 11
=>T)~ — ~ ——
(=T~ o~ (11)
10-810" 10 10° 10°
The corresponding plot of the rescaled distributidR(t t

=T) as a function of the duration in a logarithmic diagram is
shown in Fig. 3 and confirms E¢l1). The scaling behavior FIG. 4. The probability distributionB,(t) of the directed BTW
of the corresponding density distributiéh(t) is then given model forD=3. According to Eq.(12) P(t)/Int is plotted as a
by function of the duratiort. The dashed line corresponds to a power
law with the exponent;=2. In the inset we ploP,(t) vst. Here,
Int the curvature is caused by the logarithmic corrections. The inset
Py(t)~—. (12) shows that incorrect results of the exponents are obtained if one
t? does not take the logarithmic corrections into account.
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50 ' ' : : : : : (In a)*a
1 Pa(@)~——F—, (16)
45 | as
a0l with the mean-field exponent,= 3/2, and where the expo-
) nent of the logarithmic corrections, has to be determined.
Comparing Eq{(12) with Eq. (16) the corresponding expo-
3571 nent of the duration distribution is given by=1. Using the
g/\ transformation law for probability distribution®,(a)da
~380r =P,(t)dt one can derive the exponexy. Inserting Eq(14)
into Eq. (16) one gets
25
Xa
20 | P,[a(t)]~t3(In t)Xa“’Z( 200 t) an
YT T8 6 a2 e4 28 256 512 and analogous
L
o da(t) 2Int—1
FIG. 5. The square root of the average avalanche distribution ~ (18
(Y2 ys L of the directed BTW model fob=3. The solid line dt (Int)?
corresponds to a logarithmic dependencét(}ﬁ’2 according to Eg.
(13). The term of leading order in the transformation law has to

vanish and thus we get,=1/2.
tmax Due to the logarithmic corrections of the probability dis-
<t>L:f tPy(t)dt~(In L)?, (13 tribution P,(a) the simple finite-size scaling ansatz Ed)
does not work. The simplest ansatz is to assume that the
because in directed models the maximum value of the avdescaled distributiof,(a)(In a)* obeys the finite-size scal-
lanche duratiort,,, equals the system side. The scaling Ng equation
behavior of the average duration clearly displays the rel-
evance of the logarithmic corrections since without these Pa(a,L)(In @) "a~f(L)g(a/ana 19
corrections the average duration scales-ds L. In order to
confirm this result we plot in Fig. 5 the square root of thewith the universal functioy and where the scaling function
average duration as a function of the system dizin a  f(L) has to be determined. For low values of the argument of
logarithmic diagram. The scaling behavior of the averagdhe universal functiond<<a,,,,) the rescaled probability dis-
duration agrees with Eq13). tribution is independent of the system size and is character-
The scaling behavior of the probability distributiéy(a) ized by the power-law behavigy(x) ~x~ " only. Thus we
of the avalanche area also displays logarithmic correctiongbtain f(|_)~ar;;§_ Using the known scaling behavior of
The areaa of an avalanche of total duratidnis determined 5 we get the modified finite-scaling ansatz
by the average number of toppling events in each surface

t'<t (see[14]) and one gets to leading order P.(a,L)(In @) *a=L"2%(In L)™ag(aL~2n L). (20)
t 2
a(t)= E m(t)~t—. (14) We present the cqrresponding scaling plot in _Fig. 6. T_he data
-1 Int collapse of the different curves corresponding to different
. . o . system sizd. confirms the above analysis.
Instead of the usual scaling behavir-t?, which is valid In summary we showed that the scaling behavior of the

for D>D,, the leading order of the area scales with thedirected BTW model at the upper critical dimension is char-
duration asa~t?/In t. Since the maximum value of the du- acterized by strong logarithmic corrections. These logarith-
ration t,,, equals the system size the maximum avalanchenic corrections affect the usual probability distributidis.

area scales as (4)], the scaling equationdq. (5)], and the finite-size scal-
ing analysis[Eq. (7)]. The corrections are relevant in the

L? sense that one has to take them into account in order to

amax~m. (15 describe the real scaling behavior, otherwise one gets wrong

values for the exponentsee Fig. 4.

The maximum area,,,, determines the cutoff behavior of Additionally we simulated the directed BTW model for
the probability distribution and Eq.l5) indicates that the D=4 and performed a finite-size scaling analysis. In agree-
usual finite-size scaling ansdtzq. (7)] has to be modified in  ment with the exact solution of Dhar and Ramaswamy the
the presence of logarithmic corrections. In the following wesimple finite-size scaling ansatz, i.e., without logarithmic
derive this modified finite-size scaling ansatz that describesorrections, works quite well and the corresponding expo-
the scaling behavior of the avalanche distributf{a) for  nents equal the mean-field exponents. Thus, the logarithmic
D=D,. We assume that the leading order of the probabilitycorrections to the scaling behavior occur only at the upper
distribution of the avalanche area is given by critical dimensionD.=3 [14].
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FIG. 6. The modified finite-size scaling plot of the probability
distribution P,(a) of the directed BTW model fob=3. The data FIG. 7. The system size dependence of the average avalanche
collapse of the different curves corresponding to different systenfluration(t), of the BTW model forD =4. To guide the eye we plot
sizesL confirms Eq.(20). The dashed line corresponds to a power the solid line that corresponds to E§1).
law with the mean-field exponent{, = 3/2.
where we make use of the equatio=(7—1)/(7,— 1)
IV. THE UNDIRECTED BTW MODEL FOR D=4 and assume that the term of leading order of the logarithmic
. ) o corrections has to vanish. Under the condition that the scal-
In the following we return to the investigation of the un- jhq hehavior of the leading order of the maximum avalanche

d?rec_:ted_ BTW model f0|D=_4 and show th_at the avalanc_he areaa,,, is given by Eqs(22) and(23) we obtain the second
distributions are characterized by logarithmic correcnonssca"ng relation

comparable to the directed BTW model at the upper critical
dimension. First we generalize the scaling equations by in- L "%t
troducing certain exponents that describe the logarithmic  a__ =a(t;.)=
corrections. Guided by our previous analysis we assume that

———————=Na=T g+ varN:
(In L)Nvact T a~ Lat™ Yatt

the probability distributions are given by (25)
(In )% (In a)%a Here we use that the scaling exponents equal the avalanche

Py(t)~ . and Py(a)~ (21 dimension {¢,=1v,) and the dynamical exponentw(

t aa =1v,), respectively. The relatiory;, y,.= yar [13] leads to

Eq. (25). Thus, the logarithmic corrections to the usual scal-
The maximal avalanche duration and area that determine thag behavior are determined by only three independent ex-
cutoff behavior of the corresponding distributions shouldponents.

scale with the system size as Corresponding to the directed BTW model @D ,we
assume that the distributions obey the finite-size scaling an-
Lt L%a satz
o ——— Anax™ N (22
(In L)MN (InL)Na P.(t,L)(In t) Xt~ f,(L) G t/tmad, (26)
The fifth introduced exponent describes how the area scales P,(a,L)(In a) Xa~f,(L)ga(a/amay. 27

with the duration
where the scaling functions and f, are given by
t7at

a(t)~(|n t)Fat'

(23 fo(L)~L~"7(In L)Nem, (28)

L . . . fa(L)~L~"a"(In L)Na"a, (29)
At the upper critical dimension the avalanche and scaling
exponents equal the mean-field valugs=3/2, =2, va  gince for small values of the argument of the universal func-
=4, 1=2, andy,=2. In this way the logarithmic correc- igns (t<t,,,, anda<a,,,,) the probability distributions are

tions are d_etermined.by five_ non-negative exponents th%dependent of the system size. FDr=D, the avalanche
have to fulfill two scaling relations. The transformation law 54 scaling exponents equal the mean-field valugs

of probability distributions leads to the first scaling equation::3/2, 7=2, v,=4, andp,=2. Thus the finite-size scaling
analysis of the area and duration distribution gives the cor-
rection exponentd;, X;, N, X5, and the obtained values
have to fulfill the equatiofiEgs.(24) and (25)]

da(t) o

Pa(a(t))Tdtz P.(t)dt= 5 =X;— Xg, (24
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FIG. 8. The modified finite-size scaling plot of the probability L i -
distribution P,(t) of the BTW model for D=4 and L FIG. 9. The modified finite-size scaling plot of the probability
=24,32,40,48,56,64,72,80,96,128. The data collapse of the diffe/distribution Py(a) of the BTW model for D=4 and L
ent curves corresponding to different system sizesmnfirms Eq. = 24,32,40,48,56,64,72,80,96,128. The data collapse of the differ-

(26). The dashed line corresponds to a power law with the mean€nt Curves, corresponding to different system slzesonfirms Eq.
field exponentr,= 2. (27). The dashed line corresponds to a power law with the mean-

field exponentr,= 3/2.

2(%¢—Xa)=Nz—2N;. (30
) _ a less accurate data collapse liox 48 [8] since they did not
Analogous to the analysis of the directed BTW model weigye the logarithmic corrections into account.
consider the scaling behavior of the average avalanche dura-
tion (t)_ before we apply the finite-size scaling analysis. Ac-
cording to Egs(21) and(22) the average duration is given

by V. CONCLUSIONS
s\ X+l We studied numerically the dynamical properties of the
(t) = jtmaxtPt(t)dh ( In ) 31) BTW model on a square lattice f@= 3. Our investigation
(In L)M ' of the avalanche distribution, which includes a careful ex-
amination of the finite-size corrections, shows that analyses
which allows, in addition to the finite-size scaling analysis,[7,8] of the BTW model forD=4 are not conclusive. Our
an independent determination of the exponeqtandN;.  results are consistent with the assumption that the scaling
We tried several values of; and N, and obtained a good pehavior of the four-dimensional BTW model is character-
result for x,~1/2 andN~1/2. In Fig. 7 we present in a jzed by the mean-field exponents with additional logarithmic
logarithmic diagran{t)®* vs L% (In L)"%. The plotted values ¢orrections. We provide numerical tests for the theoretically
are located on a straight line, in agreement with &4). predicted logarithmic correction terms for the directed BTW
These values are confirmed by the finite-size scalingn,qe) at the upper critical dimensi@n, = 3. We introduce a
analysis of the duration distributioRy(t) according 1 EQ.  refined finite-size scaling analysis that takes these logarith-
(26). A satisfying data collapse is obtained for=1/2 and ¢ corrections into account. These logarithmic corrections
N;=1/2, as one can see in Fig. 8. , _ occur forD=4 only, strongly suggesting that the value of
Now we consider the finite-size scaling analysis of theyhe ypper critical dimension is 4. To prove this definitively in
area duratiorP,(a). Since the correction exponents have 0 gpinion it is necessary to show that the distributions of
fulfill Eg. (30) it must be possible to produce the data col-he five-dimensional model are characterized by the pure
lapse ofP,(a) by varying one parameter only if we assume mean-field values. Unfortunately, due to limited computer

that the above determined valugs=1/2 andN;=1/2 are  ,qyer it is at present impossible to consider the actual scal-
correct. We eliminated\, in the scaling ansatgEqs. (27) ing regime forD="5.

and(29)] and varied the exponeRry, . An almost perfect data
collapse is obtained fox,~1/4. The corresponding scaling
plot is shown in Fig. 9 and confirms the accuracy of the
above determined exponents and N;. In contrast to the
three-dimensional model, where the simple finite-size scaling | would like to thank A. Hucht and K. D. Usadel for many
works for L=64 [7], the finite-size behavior of the four- helpful discussions and for a critical reading of the manu-
dimensional model is governed by the logarithmic correc-script. Finally, | wish to thank D. Dhar for useful discussions
tions and the modified finite-size scaling ansatz works veryand his comments on the manuscript. This work was sup-
well already forL=24. Finally, we mention that Chessa ported by the Deutsche Forschungsgemeinschaft through
et al. who used the simple finite-size scaling ansatz obtaine&onderforschungsbereich 166, Germany.
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